If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(10/(2x-8))+(x/(x^2-4))=0
Domain of the equation: (2x-8))!=0
x∈R
Domain of the equation: (x^2-4))!=0We calculate fractions
x∈R
(10x^2-40)/((2x-8))*x^2+(2x^2-8x)/((2x-8))*x^2=0
We multiply all the terms by the denominator
(10x^2-40)+(2x^2-8x)=0
We get rid of parentheses
10x^2+2x^2-8x-40=0
We add all the numbers together, and all the variables
12x^2-8x-40=0
a = 12; b = -8; c = -40;
Δ = b2-4ac
Δ = -82-4·12·(-40)
Δ = 1984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1984}=\sqrt{64*31}=\sqrt{64}*\sqrt{31}=8\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8\sqrt{31}}{2*12}=\frac{8-8\sqrt{31}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8\sqrt{31}}{2*12}=\frac{8+8\sqrt{31}}{24} $
| 8x+14=-2x-16 | | 2/3-1/2=1/3+5/6x | | 2k(−3k+4)+6(k2+10)=k(4k+8)–2k(2k+5) | | 10000*0,97^x=50 | | 1/2(b+14)=b+14/2= | | 3(p+17)=-3 | | 2/3x2/5=N | | 15x-9=-39 | | 11y+18=51 | | 2+10x+2=180 | | 1/2x1/5=N | | 113+x=0 | | (-67)-(-21)=x | | 49v^2+16=-56 | | x+5+50=4x+10 | | x+55=4x+10 | | 8-2x=-18x+14 | | m+7+3=m+4 | | -x+20=19 | | 30x9=9x3+10 | | x+7+1/3x=3/3x-2 | | 25+0.44x=19+1.69x | | 3x2=9x-5 | | (7x-8)=(-1) | | 3^(2-x)=400 | | x^2-30=-5 | | 26=-4+3m | | 8m-4=36 | | d+4/5=-6 | | 4b+27+2b+29=180 | | 8v-73=8v-73 | | 6(y-2)-y=0 |